Effect of electrode thickness variation on operation of capacitive deionization
نویسندگان
چکیده
In capacitive deionization (CDI) water is desalinated by applying an electrical field between two porous electrodes placed on either side of a spacer channel that transports the aqueous solution. In this work we investigate the equilibrium salt adsorption and the dynamic development of the effluent salt concentration in time, both as function of spacer and electrode thicknesses. The electrode thickness will be varied in a symmetric manner (doubling both electrodes) and in an asymmetric manner, by doubling and tripling one electrode but not the other. To describe the structure of the electrostatic double layer (EDL) which determines the salt adsorption in the micropores of activated carbons, a modified Donnan-model is set up which successfully describes the data, also for situations of very significant electrode thickness ratios. We develop a generalized CDI transport model accounting for thickness variations, which compares favorably with experimental data for the change of the effluent salt concentration in time. These experiments are aimed at further testing our equilibrium and transport models, specifically the assumption therein that in first approximation, for electrodes made of chemically unmodified activated carbon particles, the EDL structure is independent of the sign of the electronic charge. To investigate the effect of chemical surface charge we also varied the pH of the salt solution.
منابع مشابه
Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions
Capacitive deionization has been developed as a promising desalination alternative for removing ions from aqueous solutions. In this study, the evaluation of capacitive performance was carried out by galvanostatic charge/discharge and cyclic voltammetry experiments. The good capacitive and electrosorption behaviors suggest carbon aerogel not only treated as an electrical double layer capacitor,...
متن کاملA Comparative Study between Membrane Capacitive Deionization and Capacitive Deionization from Isotherms and Kinetics
Membrane capacitive deionization (MCDI) is a promising technique to achieve the desalination. This novel technique can largely improve the desalination efficiency of capacitive deionization (CDI) by introducing ion-exchange membranes into CDI. This paper presents a comparative study on the electrosorptive performances of CDI and MCDI based on single walled carbon nanotubes electrodes in NaCl so...
متن کاملCapacitive Deionization using Biomass-based Microporous Salt-Templated Heteroatom-Doped Carbons.
Invited for this month's cover are the groups of Tim-Patrick Fellinger (MPI Potsdam) and Volker Presser (INM Saarbrücken and Saarland University). The image shows the dynamic process of ion electrosorption: anions are attracted and cations repelled from electrically charged electrodes based on carbons with heteroatoms. This process of capacitive deionization is particularly attractive for facil...
متن کاملSimulation and Modeling of a High Sensitivity Micro-electro-mechanical Systems Capacitive Pressure Sensor with Small Size and Clamped Square Diaphragm
This paper proposes a Micro-electro-mechanical (MEMS) capacitive pressure sensor that relies on the movable electrode displaced like a flat plate equal to the maximum center deflection of diaphragm. The diaphragm, movable electrode and mechanical coupling are made of polysilicon, gold and Si3N4, respectively. The fixed electrode is gold and the substrate is Pyrex glass. This proposed method inc...
متن کاملMicrowave-Assisted Synthesis of Highly-Crumpled, Few-Layered Graphene and Nitrogen-Doped Graphene for Use as High-Performance Electrodes in Capacitive Deionization
Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candi...
متن کامل